Averaging on Riemannian manifolds and unsupervised learning using neural associative memory
نویسندگان
چکیده
This paper is dedicated to the new algorithm for unsupervised learning and clustering. This algorithm is based on Hopfield-type pseudoinverse associative memory. We propose to represent synaptic matrices of this type of neural network as points on the Grassmann manifold. Then we establish the procedure of generalized averaging on this manifold. This procedure enables us to endow the associative memory with ability of data generalization. In the paper we provide experimental testing for the algorithm using simulated random data. After the synthesis of associative memory containing generalized data. Cluster centers are retrieved using procedure of associative recall with random starts.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملبهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکههای عصبی
This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...
متن کاملLearning Continuous Attractors in Recurrent Networks
One approach to invariant object recognition employs a recurrent neural network as an associative memory. In the standard depiction of the network's state space, memories of objects are stored as attractive fixed points of the dynamics. I argue for a modification of this picture: if an object has a continuous family of instantiations, it should be represented by a continuous attractor. This ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005